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Finite-dimensional representations of the quantum group 
GLp,,(2) using the exponential map from Up,,@Z(2)) 

R Jagannathant and J Van der Jeugt$ 
Department of Applied Mathematics and Computer Science, University of Ghenq Kdjgslaan 
281-S9, B-9000 Gent. Belgium 

Received 29 November 1994 

Abstract. Using the Fronsdal-Galindo formula for the exponential mapping from the quantum 
algebra Up,q(81(2)) to the quantum group GLP,,(2), we show how the ( 2 j  + 1)-dimensional 
representations of G L , 4 2 )  can be obtained by 'exponentiating' the well known ( Z j  f 1)- 
dimensional representations of UP,,(gl(2)) for j = I .  4, . . .: j = 1 corresponds to the defining 
two-dimensional T-matrix. The earlier results on the finitedimensional representations of 
GLq(2)andSLq(2)(orSUq(2))areobtainedwhenp=q. Representationsof(q(Z)(q EC\W 
and Uq(Z)(q E R\[O)) are also wnsidered. The ~VUctute of the Clebsch-Gordan matrix for 
Up,q(g1(2)) is 'studied. The same Clebsch-Gordan coefficienu are applicable in the reduction 
of the direct product representations of the quantum group GL,,,,(2). 

1. Introduction 

The analysis of the bialgebraic duality relationship between the pair of Hopf algebras 
A = A (GLP.,(2)) (or Funp,,(GL(2))) and U = U,,(gl(Z)) by Fronsdal and Galindo [l] 
provides the first example of generalization of the exponential relationship, obtained between 
the classical Lie groups and algebras, through the construction of the form of such a 
mapping from U,,9(g1(2)) to the quantum group GL,,,(2). Following [l], Bonechi et 
a1 [Z] studied the forms of the exponential relationship for a few other examples of 
quantum groups, namely the quantized Heisenberg, Euclidean and Galilei groups. More 
recently, Morozov and %net [3] have obtained a generalization of the result of [l] for any 
simple quantum goup with a single deformation parameter. For CL&), Finkelstein [4] 
has obtained the representations using theory of invariants a6d studied the converse map 
GL,(2) + Uq(g1(2)) leading to the identification of the generators of Uq(g1(2)) as the 
infinitesimal generators of GI&): hence, the representations of U,(g1(2)) are also derived. 

Here, we demonstrate explicitly how the Fronsdal-Galindo theory leads to a 
straightforward derivation of the finite-dimensional representaions of GL,,q(2). The earlier 
results on .the finitedimensional imeducible representaions of GL&) [4] and SLq(2) (or 
SUq(2)) [5-1 I] leading to the q-analogues of the classical Wiper d-functions or spherical 
functions, are seen to follow in the special case when p = q. We consider briefly also the 
quantum groups Uq.,(Z)(q E @\R) and U,(Z)(q E R\(O}). 
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jagan@imc.emet.in). 
1: Senior Research Associate of NFWO (National Fund for Scientific Research of Belgium) (e-mail address: 
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The question of q-analogues of the Clebsch-Gordan coefficients (CGCs) arises naturally 
when one considers the representation theory of quantum groups. The CGCs for U,(su(Z)) 
and SU&) havebeendiscussedextensively (see[7,6,10,11]). Inthecaseof GL,,,(2) [12- 
151, the structure of its dual Hopf algebra, UP,,(g!(2)), is known from studies using different 
approaches [16-181. It is clear that one can have only U,,,(u(2)) non-trivially and any 
( p ,  q)-deformation of U(su(2)) would depend effectively only on a single parameter (m. 
So, the earlier studies on a ( p ,  q)-deformed su(2) algebra led naturally to the conclusion 
that the corresponding deformed CGCs depend only on f i  (see [19,20]). Here, we shall 
arrive at the structure of the Clebsch-Gordan matrix for UP,,(gZ(2)) based on Reshetikhin’s 
general theory of quantum algebras with multiple deformation parameters [21]. The same 
Clebsch-Gordan matrices can be used for the reduction of direct product representations of 
the quantum group GLp,,(2). 

Before proceeding to consider the representation theory of GL,,(2), in particular, let 
us first recall some elements of the general theory of representations of quantum groups. 
The Hopf algebra A(G,), the algebra of functions on a quantum group G,, has a non- 
Abelian coordinate ring generated by the (variable) elements of a T-matrix satisfying the 
R T T-relation 

RT,Tz=T*ZR with Z = T @ 1  T Z = l @ T  (1.1) 

where the R-matrix is a solution of the Yang-Baxter equation. The coproduct maps of the 
elements of T, {T,w], specified by 

A ( T ~ )  = C T,~ @ qk or A(T)  = T ~ T  (1.2) 
i 

provide a unique homomorphism of the @-algebra generated by { T m k )  subject to the 
relations (1.1). One may choose a basis for A(G,) with any convenient parametrization and 
take the required coproduct maps as induced from (1.2). A @-vector subspace V spanned 
by {V, lm = 1,2, . . . , n] of A(G,) is said to carry an n-dimensional representation of G, 
if it forms a left subcomodule of A such that 

n 

A ( V ) = T & V  or A ( V , ) = ~ G ~ @ V ~  v ~ = I , z .  ..., n (1.3) 
k=l 

where { 7 m k  E A] are called the elements of the ‘representation matrix’ 7. Then, the 
comodule structure of (V,] implies, as in (1.2), 

n 

A ( x k )  = @ qk i.e. A(7)  = 767. (1.4) 
j = 1  

For example, the elements of the first (or, any) column of the T-matrix constitute such a 
@-vector subspace of A(G,) carrying the defining representation with 7 = T. Essentially, 
a representation matrix 7 of G, is a generalization of the T-matrix, with {Gk E A(G,)) 
and with relation (1.4) satisfied. 

The paper is organized as follows. In section 2, we recall briefly the main properties of 
the quantum group GL,,,(Z) and its dual Hopf algebra U,.,(gl(Z)). In section 3, we describe 
the Fronsdal-Galindo method for exponentiating the representations of UP,,(gL(2)) to obtain 
the representations of GLp,,(2). Section 4 gives the explicit representation matrices {7) for 
GLp.,(2) and shows how the earlier results on the representations of GL,(2), SL,(2) and 
SUq(2) are obtained in the appropriate limits. In section 5 we briefly remark on the quantum 
group U7,,(2). Section 6 presents the solution to the problem of CGCs for U,,q(gl(2)) and 
GL,,,(2). Section 7 contains several concluding remarks. 
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2. The properties of %L,,(2) and UP,,@l(2)) 

For the quantum group GLp,,(2) the defining T-matrix, or the defining representation 
maaix, is specified by 

with the commutation relations 
ab = qba cd = qdc ac  = pca bd = pdb 

bc = (p/q)cb 
(2.2) ad - da = (q - p-')bc 

following from the RTT-relation (1.1) corresponding to 

0 

0 

A 
0 

(2.3) 

where 

Q=&Z A = & .  (2.4) 
Here we are concerned only with the case of generic values of Q, X E C\[O). Also, it 
may be noted that we shall use both sets of notation (Q, A) and ( p ,  q )  for the deformation 
parameters interchangably, according to convenience, with the relationship (2.4) always 
implied. The coproduct maps (1.2) are explicitly given by 

, (2.5) 4 4  A @ )  a @ a + b @ c  a @ b + b @ d  
A ( T ) =  ( A(c) A(d)  ) ( c @ a + d @ c  c @ b + d @ d  

The quantum determinant of T defined by 

p = a d  -qbc = ad - pcb 

satisfies the commutation relations 

V a  = aV V b  = A-2b'D Vc = A2cV V d  = dV (2.7) 
and is a group-like element such that 

A@) = 2) 0 D. 
The dgebra U dual to A = A(G&,(2)), namely UP,,(gl(2)), may be presented in a 

standard form as follows. The generators (Jo, J* , Z) can be taken to satisfy the algebra 

(2.9) 
[JO, 5+1 = *J+ [J+? J-1 = [2JOlQ 
[ Z , J O ]  = 0 [ Z , J * ] = O  

with 

(2.10) 

Whereas the algebraic relations (2.9) do not depend on X, the coproducts do and are given 
by, up to equivalence, 

A(&) = 
A(J0) = 

J+ @ Q-'oX*' + Q*XT' @ J* 
JOB 1 + U  @ Jo 

(2.11) 
A(Z) = Z @  P + 1 @ Z .  
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The associated universal R-matrix, relating the coproduct A and the opposite coproduct 
A’ = U  A ,  with U (U @U) = U @ U, 

R Jagannathan and J Van der Jeugt 

V u ,  U E U, through the equation 

A’(u) = RA(u)R-’ V U E U (2.12) 

is 

where 

[n]=[n]Q [n]!=[n][n-1]”’[2][1] [0]!=1. (2.14) 

Hereafter, unless otherwise specified, [n] = [ n ] ~ .  The 72-matrix (2.13), say RQ,~,  is easily 
obtained [22] following the observation that, if we denote by AQ,A the coproduct defined 
by (2.1 l), then, 

AQ.A(u) = FAQ,A=~(u)F-’ V U E U with F = A(’o@z-z@Jo) (2.15) 

and by Reshetikhin’s theory [21] 

RQ.1 = F-‘RQ+, F-’ . (2.16) 

We are not concerned here with the other aspects of the Hopf algebraic stfucture, namely 
the counit and the antipode. 

3. The exponential map from UpJgl(Z)) to GLP,&) 

Let us now describe the exponential map from UP&E(2)) to GLp,,(2), h Iu Fronsdal and 
Galindo 111. To this end, we have to redefine the generators of Up,q(gl(2)) as 

j+ = J + Q - ( J o + + ) A ~ - + ~  j -  = Q(’o++~)A~-! J- & = J o  k = Z  (3.1) 
with the algebra 

[To, .?*I = &.f* [j+,  .?-I = AZi-’[2&] 
* . .  (3.2) [Z io] = 0 [Z, J*] = 0 

and the induced coproducts 

A(.?+) = j+  @ Q -2Ja~22 + i @ .?+ ’ A&) = .?- @ 1 + ~2j01.22 8 .?- 
(3.3) 

A(&) =&@I + 1 @ j o  A ( 2 )  =i@ 1 + P €32. 
Let the element ‘a’ of T be taken to be invertible [ 11 and expressed as 

a =eu. (3.4) 

D=e-V=t-’.  (3.5) 

Since we are dealing only with non-singular T-matrices, we shall represent 

Further, let us take 

j3 = a-‘b y = ca -’ 8=a+2#l 

The variables [a, b, c, d} can be expressed as 
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The set of new variables {w, @, y, 6) are seen to form a Lie algebra: 

(3.8) 
[a. PI = (P - O M  [a: VI = Lo f S)V 

[or, 61 = 0 
Then, following Fronsdal and Galindo 111, one can write down a 'universal I-matrix' for 
GLp.q(2) as 

(3.9) 

wi thQ=ep h = e .  e 1~ P,BI = Go+e)p [s, YI = ( P  - e ) y  
[B, y1 = 0 

&Xp~-Z{)'j-}eXp{a(jO f 2) f 8(jO - i))&XpQ'{Bj+] 
where 

(3.10) 

The universal 7-matrix (3.9) embodies all the finitedimensional representations of 
GL,,y(2): substituting the finite-dimensional numerical matrices representing { io ,  I+, 21 in 
the expression (3.9) for 7, expanding it, and re-expressing the resulting matrix elements in 
terms of {a. b, c, d )  and ( = D-i using the relations (2.6), (3.4)-(3.8). one obtains aU the 
finite-dimensional representation matrices {I) of G L , , ( 2 )  in the sense of the representation 
theory outlined in the introduction. Though the definition of the matrix elements of I 
by (3.9)~involves a-', it is found to be possible to express them completely in terms of 
{a,  b, c, d )  and the group-like (with A ( ( )  = e 8 e) ,  using the relations (2.6), (3.4)-(3.8). 

Except for the additional central element Z, the algebra (2.9) is the same as the standard 
U~(sl(2)) for which all the finite-dimensional irreducible representations are known (see 
[23,241): for generic values of Q E C\{O], these are the straightforward Q-analogues of the 
(2j + 1)-dimensional (spin-j) representations of the classical sl(Z), with j = 0 1 1 3 

- 2 :  ' Z " . "  So, with the extra central element as Z = zl, the (2 j  + 1)-dimensional meducible 
representations of {&, .&, 2} obeying (3.2), say (I+) I /A = (j, z ) } ,  are readily obtained 
(see also [25] for more details on the dual Hopf algebras A(GLp,q(2)) and U,,y(g1(2)) and 
representation theory of quantized universal enveloping algebras {U, (G)) in general). Let 
us call the matrix obtained by substituting the representation I'(+) in the expression (3.9) for 
I as-I(@). The matrix elements are labelled as, (e) [ m, k = j ,  j - 1, . . . , -(j - l), -j). 

The basic theory underlying the FronsdalGdindo formalism is as follows. Let { x A  ) be 
a basis for A(G,) such that 

xBxc = h i C x A  A(xC)  = f&xA 8 x B .  (3.11) 
A A.B 

Let {XA) be the basis of U,,(G) chosen such that 

XAXB = f:BxC A ( X A )  = hiCXs €3 Xc . (3.12) 
c B,C 

Then, the universal I-matrix defined by 

I = c X A X A  
A 

satisfies the equation 

A ( T )  = A ( x ~ ) x A  = 1931 
A 

(3.13) 

(3.14) 

in view of the duality relations (equations (3.11),(3.12)). Equation (3.13) should be 
interpreted as defining a universal I-matrix in the sense that I@) = CA xAXY' E A(G,), 
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for {x?)], the numerical representations of {&I7 in any representation r(w). n u s ,  the 
elements {e) E A(G,)] form a representation matrix for the quantum group G ,  and the 
formula (3.13) expresses abstractly the exponential map U,(G) 4 G,. In the present 
context of GL,,,(2), the basis elements of A(GL,,(2)) and Up,,(gZ(2)) are given (see [l] 
for details of derivation), respectively, by 

R Jagannuthan and J Van der Jeugt 

(3.15) 
I X A  = y u ~ c y a z p  a B 

Q + d Q - l ) p  - (io + 2y2 (& - 2ys Q - i a ( a r ' ) P  + X A  = 
[a' I ! a2 ! a3 ! tad! 

al,az, (13. a4 = 0, 1,2, . . . . 
As was noted by Bonechi era1 [2], the relations (3.11),(3.12) also imply 

~5 = x * A ( x A )  %% = C x ~ A ' ( x * )  (3.16) 
A A 

where '1; = 7 @ 1 and lz = 1 c3 7. Hence, in the present case one would have 

R@@P)7@)7@) 1 2  = $fi)7@)R@@") 2 1  (3.17) 

in accordance with the FRT formalism of quantum groups [26] where R@@N) is the R- 
matrix corresponding to the direct product of two representations (r(@)) and obtained by 
substituting the respective representations in the formula (2.13) for the universal R. 

Now, we note that the R-matix (2.3) defining the T-matrix (2.1),(2.2) is R(f-f)@(t.i).  
For a generic value of z (# f), R(!.2)@(isL) has the same form as (2.3) with h replaced 
by h2 and thus defines a T-matrix whose elements will obey the commutation relations 
of the same form as (2.2) with p and q replaced, respectively, by p' = pz+i/qz-f and 
q' = q'+i/p'-f. In general, it is clear from (2.15) and (2.16) that R(j*z)@UJ) would have 
the same form as RG,i)@U*f) with A replaced by Ah. 

4. Explicit representation matrices {I".")] 

First, let us consider the matrices 'T(i.4) and I('.$) explicitly and, then, generalize the 
result. To verify that I(+.!) is the defining T-matrix (2.1) we have to substitute the 
matices 

(4.1) 
in (3.9) and expand. The result is 
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as expected, this is, in fact, the starting point of the Fronsdal-Galindo formalism. It may 
be noted that at the level of the two-dimensional defining representation Exp( ] can be 
replaced by ordinary exp{ ] (see Finkelstein 141 and Akulov er a1 [U] for the use of such a 
realization of the 2 x 2 T-matrix for GL,(2) and SL,(2)). The deformed structure of the 
exponential map (3.9), brought out by the Fronsdd-Galindo approach, is revealed only in 
dimensions > 2. 

For l+,i), with 121 = Q + Q-I, 

0 Q-f 0 0 0 0  

.f+ =[2]: ( : : f )  .f- = [ 2 ] i (  Q i  O l  0 )  

0 Q-3 0 (4.3) 
1 0 0  

0 0 -1 0 0 1  

Substituting this representation in (3.9) we obtain 

Now, using relations (2.6), (3.4)-(3.8), we get 

1 a2 [2]$Q-;ab A?b2 

Tcl.f) = e  [2]f&uc ad + Q-'A-'bc [Z]+Q-fA-lbd . (4.5) ( ACZ [2]f Q-fhcd dZ 

Note that, in deriving (4.5) from (4.4). relations (3X) are used in the Heisenberg-Weyl form 

eUb = QA-'pe' eay = QAye" e@p = Ape4 e*y = A-'ye4 
(4.6)" erne+ = e+ea 

In the limit p = q, or Q = q and A = 1, 'D becomes a central element of A and 
Gt&) ----f GL9(2); further, choosing 2, = 1 (or = 1)  leads to the quantum group 
SL,(2). In these cases, i.e. for GL&) and SL9(2), with A = 1, z drops out of the 
picture and hence we may simply denote the (2 j  + 1)dimensional representation matrix as 
I G )  which is obtained by taking A = 1 in Io..;). Then, for SL,(2) the matrix elements 
[Ti;) I m, k = l , O ,  -1) of I"' in (4.5), with A = 1 and e = 1, are seen to coincide with 
the spin-1 representation functions [d,$ I m, k = 1,0, -1) given by Nomura [IO] (note: 
our q is Nomura's q-f ) .  

For SUq(2) one has to take into account further relations among (U. b, c, d )  due to the 
requirement of the existence of an involutional antihomomorphic *-operation satisfying 

p y  = y p  . 

(4.7) 
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so that 

R Jagannathan nnd J Van der Jeugt 

(4.8) 

with q E IR\{O} necessarily. 
T*T = TT' = 11, requires the relations 

It may be noted that the unitarity condi5on (4.7), or 

(4.9) aa* + q'c'c = a*a + c*c = 1 

to be satisfied, besides the commutation relations (2.?). 

.f*+r = Qr"+?{U =! m l [ j  + 1 Fml)$&.iei 

2 - Ig 

Let us now generalize the above result. For rti3i), the matrix elements are 

- 
m , k =  j, j - 1, ..., -(j- l ) , - j .  

(4.10) 

Substituting this representation (4.10) in (3.9), it is found, after considerable algebraic 
manipulation, that one can write 

I JO.mk = mgmk 

mk - mk 

aj+k-s bm-k+s cs dj-m-s 
e-s(Zl-m+k-r)h-'(m-L+s) - 

s [ j  + k  - S I !  [m - k + s ] !  [ s ]!  [j --m - s ] !  
(4.11) 

where s runs from max(0, k - m) to min(j + k, j - m). In the limit h = 1, Q = q and 
5 = 1, corresponding to SL,(2) (or SUq(2)), the above expression (4.11) for 72) coincides 
with Nomura's expression 1101 for the quantum d-function dik (with OUT q replaced by 
Nomura's q-f  as already noted). Nomura [ l o ]  has also noted the RTT relation (3.17) for 
the representation matrix Tu) of SU,(:). When 5 is not taken specifically to be unity, 
the above matrices {T(j) I j = 0, ?, 1, z,. . .} (4.11). with Q = q and A = 1, provide the 
representations of GL,(2) (see [4] which gives these representations with an equivalent 
expression for the r.h.s. of (4.11)). The r.h.s. of (4.11) can be rearranged in several ways 
and so various equivalent expressions~exist for in terms of different q-special functions 
for the cases of SLq(2) and SU,(2) (see [6,7,9,11, lo]). 

I 

When z # 4, the r(j.z)-representation of Up,(g1(2)) is given by 

A 

.. 
(4.12) 

I .f+.mk = hz-iQTm+f[[j * m l ~  + 1 rml}?am.k+l 

h , m k  = m&k 
z m k  Z&k 

m , k =  j, j - 1 ,  ..., - ( j - l ) , - j .  

Substituting this representation (4.12) in (3.9) one gets e -  ,z) - h(m-k)(z-;)~I-zr7ti . i )  mk (4.13) 

As can be seen from (4.13), for generic z, the one- and two-dimensional representations are 
respectively given by 

(4.14) 

m ; k =  j ,  j - 1 ,..., - ( j -  l ) , - j ,  

7 ( 0 . z )  = 5-2 = vz 
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and 
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(4.15) 

As has already been noted at the end of section 3, it can be seen that T(t.z) corresponds to 
the fundamental T-matrix of GZPc,,,(2) with p' = pz+t/qL-f  and q' = qz+f/pz-i. 

5. The quantum group U&) 

It is not possible to have SUp.q(2) with p # q and for SUq(2) it is necessary that q E R\(O]. 
However, we can have Up,q(2) with p = q (complex conjugate of 4); we can have U?,&) 
for any q E C\R. For q E R\{O] one gets U9(2) of~which SUq(2) is the special case 
corresponding to unit value for the quantum determinant. To see the features of U?,&) and 
U&) one has to study the consequences of imposing the unitarity condition on GLp,,(2) 
(see [28] for some useful details in this regard). 

The fundamental T-matrix of U7,,(2), for q = is given by 

a b  a +Vc* a -qc*D 
' = ( c  d ) = ( c  Da* ) = ( c  a*V ) 

and their-*-conjugate relations, satisfied (q* = a. Note that 

TT* T*T ='I (5.3) 
in view of the relations (5.2), as required, and 'D may be representad as eiv with (o* = (o. 

If q E R\[O) the above equations (i.e. (5.1)-(5.3)) hold with B = 0 and V is a central 
element with values on the unit circle in C one gets Uq(2). If the value of 23 is fixed 
to be unity Uq(2) -+ SU,(2). It is obvious that the representation matrices of Uq,q(2) 
and U9(2) are given by equation (4.11) with relations (5.1) between (a. b, c, d }  taken into 
account. . .  

6. Clebsch-Gordan coefficients for Up,,@Z(2)) and GLp,&) 

Let C and C' be the Clebsch-Gordan matrices (CGMS) such that C-'AC and C'-lA'C' 
are reduced representations corresponding to the coproduct A in (1.2) and the opposite 
coproduct. From the relation (2.12) it is clear that C' = RC, where R is the R-matrix 
obtained from the universal 72. by substituting the corresponding irreducibIe representations 
involved in the coproduct (see [291 for a detailed discussion on the relation between Cs 
and R). Now, let us make the following observation on the CGMS for Up,q(gE(2)) (or 
uQ,A(gz@))): from (2.15) it is easy to see that 

CQ,A = FCQ.I,I Ch,i = F-'Ch,,=, . (6.1) 

( j lz lml .  jzzzmzl j z m )  = Am'4--i"2S z,z,+z2(.iv" j z m z l j m ) ~  
U I Z I ~ I ,  jzz~mzljzm)'  = hz"2-m'z1~~.Ll+ll(j Iml, jzmd j m ) h  

Writing explicitly, one has the expressions for the ( p ,  q )  (or (e, A)) CGCS as 

(6.2) 
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where { ( h m l ,  j z m z l j m ) ~ ]  and { ( j m .  jzfflzl jm)$ are the Q-CGCS of UQ(gl(2)) 
corresponding respectively to the coproducts AQ,A=I and 

It is particularly interesting to consider the coproducts for U&(2)) with q E C\W. In 
this case, Q = 141 and A = e-ie. Hence, the coproduct (2.11), with Hermitian 2 and Jo, also 
preserves the Hermiticity property of the pair (J+. J-), i.e. JL = JT. In the physical context 
this implies an addition of q-angular momenta of two particles, (1) and (2), according to 
the rule 

(6.3) 

with some 'phases' which may somehow be irremovable. In fact, one can even have 
141 = 1, i.e. a modified addition rule for ordinary angular momenta with a new additive 
'phase' quantum number. This aspect of the quantum algebra UT,&(2)) may be worth 
probing further, particularly in view of the interest in physical applications of UP,&(2)) 
(see [30]). 

Let us now look at the direct product representations of the quantum group GL,,(2). 
From (3.16) it follows that 

z'& = t x P ~ - z { Y  A(.f-))eXp{dA(.fo) + A@)))EXPQ,{BA(.~+)) 
%?i = EXpQ-2 { y A'(.f-))eXp{a (A'(&) + A'@)) ) t X p ~ i  {PA'(.f+)} 
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(see (2.1 1)). 

A(J*) = J*(l)lql-'o@)e*sz(z) + IqlJ0(')e*jeZ(I)J*(2) 

A(&) = Jo(1) + Jo(2) A(Z) = Z(1) + Z(2) 

(6.4) 

where A is given in (3.3) and the representations involved in the coproducts are the 
relevant representations {r(j.i)]. It is particularly easy to verify these relations in the 
case when A corresponds to the direct product of two identical r(f,%)-representations. 
It is obvious that C-'z'ZC and C'-l'ZZC' will be in reduced forms. Since, for 
Up,q(gl(2)), ACil*ZI)@Ci2~z2) --+ xj!zk-j2, fBr~,z~+z2), the direct product representation 
5% = (T(jl.'l) @ Zti23z2))(I(j1,z1) 8 7 ( j 2 . 4 ) )  (or 121; corresponding to the opposite 
coproduct), where ZCi,2) is the (2 j  + 1)-dimensional identity matrix corresponding to the 
unity in the G, 2)-representation, will be reduced to the direct sum of the representation 
matrices {T~.zl+z2)lj = I j l  - jz l ,  ..., j1+ j z )  and the corresponding CGCS are given by (6.2). 

As an interesting example, let us consider the direct products of the representations 
labelled by (0, z - $1 and ( j ,  $) for both Up,q(g2(2)).and GLP,q(2); note that, in general, 
the ( j ,  z)-representation is defined by (4.12) (or (3.1)). Using the coproduct (3.3) and its 
opposite, the corresponding direct product representations of UP,&1(2)) are given by, with 
UI,  21) = (0, z - 4) and (jz, 22) = ( j .  

and 
(6.5) 
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Using these representations in (6.4) above, it is seen that the corresponding direct product 
representations of GLPJ2) are given by 

55 = &lcj.t) 5'Ti = 7ti.i)p:k , (6.7) 
It is easy to verify that the direct product representations of UP,&l(2)) given by (6.5) 
and' (6.6) can be 'reduced' to (or made equivalent to, in this case) the defining 
representation (4.12) using the CGCs obtained from (6.2) by taking the Q-CGMS to be identity 
matrices. The same CGMs are seen to 'reduce' also the direct product representations 
of GLp,,(2) given by (6.7) to the defining representation (4.13). It may also be noted 
that the direct product representations of GLp,9(2) given by (6.7) satisfy the Rrr relation 
(3.17) with a ( 2 j  + 1)-dimensional 'R-matrix' with elements [Rd = h(ZL-')"Sdlm, k = 
j ,  ( j  - l),  . . . , - ( j  - 1). - j ]  in accordance with (2.16). 

7. Conclusion 

Before closing, we may mention a few related points. 
The converse of the exponential map, namely the passage GL,,(2) -+ UP,,(gZ(2)) 

using the representation of GLp,,(2) close to identity, for infinitesimal values of the group 
parameters {a, p, y. 61, follows by writing 7 1 f y j -  +a(& + 2) + a(& - 2) + gj+. 
Thus, if one can obtain the representations of G L 4 2 )  by some method directly, then 
the representations of its infinitesimal generators (Jo,  j+, 21 forming the dual algebra 
UP,,(gl(2)) can be derived. This is how Finkelstein [4] obtains the relationship GL,(2) -+ 
U,(gl(2)), independent of [l], using the theory of invariants to derive an equivalent form 
of the representation mahix (4.11) for the case p = q.  

Finkelstein's analysis of the representations of GL9(2) [4] is motivakd by the 
conslruction of a GL,(2) Yang-Mills theory in which one would regard the non-Abelian 
group parameters [a (x ) ,  ,9(x), y ( x ) ,  S ( x ) ]  (the coproduct rules of which specify the group 
multiplication law as pointed out in [3]) as space-time fields. Akulov et al [27] have 
considered the differential calculus of the group parameter space for SL,(2) and studied 
a related field-theory model. The problem of realization of the group parameters as 
dependent on continuous classical variables (like space-time) has ,been addressed recently 
by Volovich [31] at the level of the variables [ U ,  b, c. d }  (see also [28]). Let us observe an 
example of such a realization based on the relations (3.7) and (3.8). Using the well known 
Bogoliubov transformation of a pair of commuting sets of boson.operators, we can &te 

01 = (P - e ) v & w l ( X )  + (P +whwm 
B = 40 ~Y = &) 

6 = ( P  + wf(X)ql(x)  + (P - w;w2w 
with @ I ( x )  = (coshn)at -(sinhx)d, ~ z ( x )  = (cosbx)az-(sinhx)al, ' i x ER, [al,ai] = 1, 

[az, 41 = 1, [al. a21 = 0, [al. ai]  = 0. In the context of building gauge theories based on 
quantum groups related to GL(2) it is interesting to observe that in the case of GLP,4(2) the 
two-dimensional vector spaces carrying the fundamental representation (T) have commuting 
components if p = 1, just like the Hilbert space of~a  two-level ordinary quantum mechanical 
system. Besides the interpretation of the mahix elements of the representations of SU,(2) as 
wavefunctions of quantum symmetric tops [ 101, generalization of quantum dynamics based 
on the representations of SU9(2) has also been considered [32]. Since having one more 
parameter would provide more flexibility in model building, we believe that the study of 
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representations of GL,,, (2) should prove useful. Recently, generalization of the exponential 
map for the quantum supergroup GLp.,(lIl)  has also been obtained [33]. 

There are several approaches to quantum groups (or quantum ma& pseudogroups) 
and quantum algebras (or quantized universal enveloping algebras) which are in duality 
with the quantum groups in the Hopf algebraic sense (see, e.g., [34,35] for reviews of the 
subject). In the case of the quantum group GL,,q(2) [12-151 the structure of its dual Hopf 
algebra UP,,(gl(Z)) is known from the studies by Schmacher  et al [16], using the non- 
commutative differential calculus approach, and by Dobrev [17,18,25] using the approach 
of Sudbery [36].  The recent analysis [I] of the duality relations between Lie bialgebras, 
with particular reference to A(GL,&)) and UP,,(gl(2)), has led to a generalization of 
the well known exponential relationship between a classical Lie group and its Lie algebra 
and the explicit form of such an exponential map has been obtained between the quantum 
algebra U,,,(gl(2)) and the corresponding quantum group CL,,&). This relationship is 
given abstractly in terms of a universal I-matrix, involving both the group parameters of 
GL,,,(2) and the generators of UP,,(gl(2)), and for particular representations of U,,,(g1(2)) 
this universal 7-matrix gives the representations of GL,,, (2). Using this Fronsdal-Galindo 
formalism we have derived explicitly the finitedimensional representations of GL,,, (2). by 
exponentiating directly the well known (2 j + 1)-dimensional irreducible representations of 
UP,,(gZ(2)), and the earlier results on the representations of GL,(Z), SLq(2) and SU,(2) 
are found to be special cases in the appropriate limits. We have also derived the CGCs for 
the quantum algebra U,,,(gl(Z)) and noted that the same CGCs can be used for the Clebsch- 
Gordan reduction of the direct product representations of the quantum group GLP,q(2). 
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