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Finite-dimensional representations of the quantum group
G Ly 4(2) using the exponential map from U, ,(gl(2))

R Jagannathanf and J Van der Jeugt}

Department of Applied Mathematics and Computer Science, University of Ghent, Krijgslaan
281-89, B-5000 Gent, Belgium

_ Received 29 November 1994

Abstract. Using the Fronsdal-Galindo formula for the exponential mapping from the quantum
algebra Up 7(gf(2)) to the quantum group GL (2}, we show how the (2 + 1)-dimensional
representations of GLp g(2) can be obtained by ‘exponentiating’ the well known (2] + 1)-
dimensional representations of Up o{(gf(2)) for j =1, %. e j= % cotresponds to the defining
two-dimensional T-matrix. The earlier resuits on the finite-dimensional representations of
GL,(2) and SLg(2) (or ST, (2)) are obtained when p = ¢. Representations of {7 4(2)(g € C\R
and U, (2)(g € R\{0}) are also considered, The structwe of the Clebsch-Gordan matrix for
Up 4 {gf(2)} is studied. The same Clebsch~Gordan coefficients are applicable in the reduction
of the direct product representations of the quantum group GLp ,4(2).

1. Introduction

The analysis of the bialgebraic duality relationship between the pair of Hopf algebras
A=A (GLp'q(Z)) {or Fung 4(GL(2))) and U = Up 4(gl(2)) by Fronsdal and Galindo [1]
provides the first example of generalization of the exponential relationship, obtained between
the classical Lie groups and algebras, through the construction of the form of such a
mapping from U, ,(gl(2)} to the quantum group GL,,(2). Following [1], Bonechi et
al [2] studied the forms of the exponential relationship for a few other examples of
quantum groups, namely the quantized Heisenberg, Euclidean and Galilei groups. More
recently, Morozov and Vinet [3] have obtained a generalization of the result of [1] for any
simple quantum group with a single deformation parameter. For GL,(2), Finkelstein [4]
has obtained the representations using theory of invariants and studied the converse map
GLy(2) — U,(gl(2)) leading to the identification of the generators of U,(gl(2)) as the
infinitesimal generators of GL,4(2): hence, the representations of Uy (gI(2)) are also derived.

Here, we demonstrate explicitly how the Fronsdal-Galindo theory leads to a
straightforward derivation of the finite-dimensional representaions of GL, ,(2). The earlier
results on -the finite-dimensional irrreducible representaions of GLg4(2) [4] and SL4(2) (or
SU,(2)) [5-11] leading to the g-analogues of the classical Wigner d-functions cr spherical
functions, are seen to follow in the special case when p = g. We consider briefly also the
quantum groups Uz ,(2)(g € C\R) and U,(2)(g € R\{0}).
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The question of g-analogues of the Clebsch—Gordan coefficients (CGCs) arises naturally
when one considers the representation theory of quantum groups. The CGCs for U, (su(2))
and SU,(2) have been discussed extensively (see [7,8, 10, 11]}. Inthecase of GL, ,(2) {12~
15], the structure of its dual Hopf algebra, U, ,(g!(2)), is known from studies using different
approaches [16-18]. It is clear that one can have only U, ,(2(2)) non-trivially and any
{(p, q)-deformation of U (su(2)) would depend effectively only on a single parameter (,/pq).
So, the earlier studies on a (p, g)-deformed su(2} algebra led naturally to the conclusion
that the corresponding deformed CGCs depend only on ./pg (see [19,20]). Here, we shall
arrive at the structure of the Clebsch-Gordan matrix for U, ,(gi(2)) based on Reshetikhin’s
general theory of quantum algebras with multiple deformation parameters [21]. The same
Clebsch—Gordan matrices can be used for the reduction of direct product representations of
the quantum group GL, 4(2).

Before proceeding to consider the representation theory of GLp 4(2), in particular, let
us first recall some elements of the general theory of representations of quantum groups.
The Hopf algebra A(G,), the algebra of functions on a quantum group Gg, has a non-
Abelian coordinate ring generated by the (variable) elements of a T-matrix satisfying the
RTT-relation

R, =1LNR with =T®@1 L=1QT (1.1)

where the R-mairix is a solution of the Yang-Baxter equation. The coproduct maps of the
elements of T, {T.}, specified by

ATw)=3 Tw®Tx  of  AT)=TQT (12)
J
provide a unique homomorphism of the C-algebra generated by {7.:} subject to the
relations (1.1). One may choose a basis for A(G,;) with any convenient parametrization and
take the required coproduct maps as induced from (1.2). A C-vector subspace V spanned
by {(Vmlm = 1,2, ..., n} of A(G,) is said to carry an n-dimensional representation of G,
if it forms a left subcomodule of A such that
n
AV) =T@V or A=) Tu®V: ¥Ym=12,...,n (1.3)
k=1
where {Tu € A} are called the elements of the ‘representation matrix’ 7. Then, the
comodule structure of {V,} implies, as in (1.2),

n
ATu) =) Ty ®Tie ie. A(Ty =TT . (14)
i=1
For example, the elements of the first (or, any) column of the T-matrix constitute such a
C-vector subspace of A(G,) carrying the defining representation with 7 = T. Essentially,
a representation matrix 7 of G, is a generalization of the T-matrix, with {T;x € A(G,)}
and with relation (1.4) satisfied.

The paper is organized as follows. In section 2, we recall briefly the main properties of
the quantum group G L 4(2) and its dual Hopf algebra U, , (g/(2)). In section 3, we describe
the Fronsdal-Galindo method for exponentiating the representations of U, 4(gl(2)) to obtain
the representations of GL ,(2). Section 4 gives the explicit representation matrices {7} for
GL,,4(2) and shows how the earlier results on the representations of GL4(2), SL,(2) and
SU,(2) are obtained in the appropriate limits. In section 5 we briefly remark on the quantum
group Uz 4(2). Section 6 presents the solution to the problem of CGCs for Uy, ,(gi(2)) and
GLp4(2). Section 7 contains several concluding remarks.
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2. The properties of G Ly 4(2) and U, ,(gl(2))

For the quantum group GL,,(2) the defining T-matrix, or the defining representation
matrix, is specified by

a b
T = c d (2.1)

with the commutation relations
ab = gba cd = gde ac = pca bd = pdb

be = (p/q)cbh ad —da = (g — p~"be (2.2)
following from the RT T-relation (1.1) corresponding to
o' o0 0 0
1 0 At -1 _ 0
R=C"1 6 o ° A ¢ 0 23)
0 0 0 0!
where
Q=+pg  r=+pla. 24

Here we are concerned only with the case of generic values of Q, A € C\{0}. Also, it
may be noted that we shall use both sets of notation (Q, A} and (p, g) for the deformation
parameters interchangably, according to convenience, with the relationship (2.4) always
implied. The coproduct maps (1.2) are explicitly given by

Ala) A) a®a+b®c a®bLbRd

A= ( Aﬁc)) A@d) ) - ( c®a+d®c c®b+d®d ) (23)
The quantum determinant of 7 defined by

D=ad —gbc = ad — pch 2.6)

- satisfies the commutation relations

Dg = gD Db = 1"%D De = A%cD Dd =dD Q.7
and is a group-like element such that

ADYy=D®D. (2.8)

The algebra I dual to A = A(GL,4(2)), namely U, 4(gl(2)), may be presented in a
standard form as follows. The generators {Jo, J=, Z} can be taken to satisfy the algebra

o, Ju] = 1o [y, J-1=[2Jolg

[Z,00] = 0 [Z,J:]1=0 (2.9)
with
q* —q*
Xlq = — vaX. 2.10
[ Iq q- Q‘l q ( }

Whereas the algebraic relations (2.9) do not depend on A, the coproducts do and are given
by, up to equivalence,
A= Je® Q™" + 0" @ L

2.11
A(lp)= SHhRE+1& % AMZ)=ZRL+1Q2Z. @11



2822 R Jagannathan and J Van der Jeugt

The associated universal R-matrix, relating the coproduct A and the opposite coproduct
AN=cA withc@@v)=v®u, Vu,veld through the equation

A'w) =RA@R™ Yue U (2.12)
is

1-
R= Q"“’o@’uw(z%-’owz( ?) gD QNI @ @MAZI)" (213)

where
[rl=[rlg [n]! = [n}[n —11---[2][1] Oy =1. (2.14)

Hereafter, unless otherwise specified, [n] = [r]lg. The R-matrix (2.13), say Ry 1, is easily
obtained [22] following the observation that, if we denote by Ag,, the coproduct defined
by (2.11), then,

Apalw) =FAgm)F! Yueld with F = Ah®Z-Z8h) (3 15)
and by Reshetikhin’s theory [21]
Roa=F "Rt F1. (2.16)

We are not concerned here with the other aspects of the Hopf algebraic structure, namely
the counit and the antipode.

3. The exponential map from Up, o(gl(2)) to GL,4(2)

Let us now describe the exponential map from U 4(g1(2)) to GL, 4(2), & Ia Fronsdal and
Galindo [1]. To this end, we have to redefine the generators of U, ;(gl(2)) as

Jyp = J 0t 22 Jo=oWtZ-ty. h=J  Z=2Z GB.D
with the algebra
Mo, el =%fe [y, L1=222"1120)

- PN (3.2)
{Z,Jo]=0 [Z,J:]=0
and the induced coproducts
A =d, @ @2 r10f, A(f_) =f@1+0"2gJ 3
Al =Hh@1+10 0 AZ)=201+1QZ.
Let the element ‘@’ of T be taken to be invertible [1] and expressed as
' a=ce%. B (34)
Since we are dealing only with non-singular T-matrices, we shall represent
D=e®=¢2 (3.5)
Further, let us take
B=atb y =cal d=a+24, (3.6)

The variables {a, b, ¢, d} can be expressed as

a=e" b=¢e"B ¢ =ype¥ d=yef+e?, (3.7
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The set of new variables {e, 8, v, §} are seen to form a Lie algebra:

[, Bl=(p — )P [, ] = (0 +8)y

(8, 8] = (p+a)f3 3, v1=(p—8)y " with@Q=e® A=¢e. (3.8)
(2. 8] = [B.¥1=0

Then, following Fronsdal and Galindo [1], one can write down a “universal 7-matrix’ for
GL,4(2) as

T = ExpolyJ_lexplalfy + 2) + 8(h — 2)}Exp p{B iy} (3.9)
where :

oo n -1 —-an(n l}
Expp{X} =,Z {H(q”‘—l)} q — )X = z . =N - X", (3.10)

The universal T-matrix (3.9) embodies all the finite-dimensional representations of
GL, ,(2): substituting the finite-dimensional numerical matrices representing {Jo. s, Z} in
the expression (3.9) for 7, expanding it, and re-expressing the resulting matrix elements in
terms of {a, b, ¢, d} and § = D3 using the relations {(2.6), (3.4)-(3.8), one obtains all the
finite-dimensional representation matrices {7} of GL, ,(2) in the sense of the representation
theory outlined in the introduction. Though the definition of the matrix elements of 7°
by (3.9) involves a~!, it is found to be possible to express them completely in terms of
{a, b, ¢, d} and the group-like & (with A(¢) = & @ &), using the relations (2.6), (3.4)-(3.8).

Except for the additional central element Z, the algebra (2.9) is the same as the standard
Ug(si(2)) for which all the finite-dimensional irreducible representations are known (see
[23,24]): for generic values of @ € C\{0}, these are the straightforward Q-analogues of the
(2j+1)-dimensional (spin-j) representations of the classical sI(2), with j =0, :1,_, 1, g, eee
So, with the extra central element as Z = z1, the (27 + 1)-dimensional irreducible
representations of {Jo, Sz, 2} obeying (3.2), say [T® | u = (j,2)}, are readily obtained
(see also [25] for more details on the dual Hopf algebras A(GL, 4(2)) and U, ,(g(2)) and
representation theory of quantized universal enveloping algebras {U;(G)} in general) Let
us call the matrix obtained by substituting the representation I''™® in the expression (3.9) for
T as T, The matrix elements are labelled as {Z% [ m,k = j, j—1,...,—(j — 1), —j}.

The basic theory underlying the Fronsdal-Galindo formalism is as follows. Let {x4} be
a basis for A(G,) such that

xBxC =" nECxA A=) foxt e, (3.11)
A AB
Let {X,4} be the basis of U, (G) chosen such that
Xa¥s =) fipXc AX) =) hiXp®Xc. (3.12)
C ) B,C

Then, the universal 7 -matrix defined by
T= Z XX, (3.13)
A

satisfies the equation 7
ATy =Y AMXa=T&T (3.14)
A

in view of the duality relations {(equations (3.11),(3.12)). Equation (3.13} should be
interpreted as defining 2 universal 7-matrix in the sense that 7® =3, x“’-Xf{‘) € A(G,),
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for {Xff)}, the numerical representations of {X,}, in any representation '™, Thus, the
elements {’1;,,(‘,:') € A(G,)} form a representation matrix for the quantum group G, and the
formula (3.13) expresses abstractly the exponential map U,(G) — G,. In the present
context of GLp 4(2), the basis elements of A(GL,4(2)) and U, ,(gl(2)) are given (see [1]
for details of derivation), respectively, by

4 = y“laa25“3ﬁ“4

gl a4 2y (Jy — 2y Qiue-D f

BETET T al e [T
a1, a2, a3,a4=0,1,2,.... (3.15)
As was noted by Bonechi et al [2], the relations (3.11), (3.12) also imply
Th=) *AXy  BR=) x'AE) (3.16)
A A

where 71 == 7 ® 1 and 7; = 1 ® 7. Hence, in the present case one would have
R(ﬁl@.ﬂ-)g‘l(ﬂ-)fé(#) = v];z‘(#Jg'lcu)R(#ﬁ,ﬂ) (3.17)

in accordance with the FRT formalism of quantum groups [26] where R“®® s the R-
matrix corresponding to the direct product of two representations (I'*)) and obtained by
substituting the respective representations in the formula (2.13) for the nniversal &.

Now, we note that the R-matrix (2.3) defining the T-matrix (2.1), (2.2) is rG-He(),
For a generic value of z (# 1), R(3:)8(:2) has the same form as (2.3) with A replaced
by A% and thus defines a T-matrix whose elements will obey the commutation relations
of the same form as (2.2) with p and g replaced, respectively, by p' = p*+i/g*~% and
g’ = g**i/p*"3. In general, it is clear from (2.15) and (2.16) that RY-280.2) would have
the same form as RY$80:2) with A replaced by 2.

4. Explicit representation matrices {7°U-?}}
First, let us consider the matrices 7(2:2) and 7(:2) explicitly and, then, generalize the

result. To verify that 7(3) is the defining T-matrix (2.1) we have to substitute the
matrices

n 01 » ¢ 0 ~ 1f1 0 ~ 110
= Jo = = - J———
T (0 0) (10) Jo 2(0 —1) z 2(01)
4.1)
in (3.9) and expand. The result is

o 00 e O 0 B8
T(i-z):gxpg-z{(y O)Jexp[(o _6)}8xpgz{(o 0)}
{10 e 0 I Y | ¢ e*s
Ty 0 e 0 1) \ ye* yerg+e®
_{a b _f[a b 42
“\e calbta'D ]\ d “.2)
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as expected; this is, in fact, the starting point of the Fronsdal-Galindo formalism. It may
be noted that at the level of the two-dimensional defining representation £xp{ } can be
replaced by ordinary exp{ } (see Finkelstein [4] and Akulov er al [27] for the use of such a
realization of the 2 x 2 T-matrix for GL,(2) and SL,(2)). The deformed structure of the
exponential map (3.9), brought out by the Fronsdal—GaImdo approach, is revealed only in
dimensions > 2.

For ['(t3), with [2] = 0 + 0™,

0 Qi 0 4f 0 0 0
o=l 0o o of Jo=mil gt 0 o0
6 0 0 0 g5 0
4.3)
1 0 O L 100
h=lo0o o0 o} 2:-2- 010
o 0 -1 0 01
Substituting this representation in (3.9) we obtain
( ad+2e (2] 3 Q—% e¢v+2a"6 —.le¢+2a’32 \
L 25 O~ 1 yedle gl
LI Qiyett™  [lyetegres (2T
70D = | HAIGEE) | gy
. (},Zeqb-l-ZcxﬂZ
217 03 2 ap+20
Qe+ @ ]7 ij i _’i +[2lye 8
+[2]1: @72 ye™) fe-Gotzy
Now, using relations (2.6), (3.4)—(3.8), we get
a2 (2] 0 iab A1p?
TOD =g | 2lig-tac ad+ 0 bc [22Q~Ir8d | @5)
rc? (212 0% rcd &

Note that, in deriving (4.5) from (4.4), relations (3.8) are used in the Heisenberg—Weyl form

e®8 = Or"18e” ey = Qhye” e? g = 1Be? ey = A "lpe?
ee? = efe® By =y8B.

In the limit p = g, or O = g and 2 = 1, D becomes a central element of .4 and
GL,4(2) —> GL,4(2); further, choosing D = 1 (or £ = 1) leads to the quantum group
SL,(2). In these cases, i.e. for GLy(2) and SL,(2), with A = 1, z drops out of the
picture and hence we may simply denote the (27 4 1)-dimensional representation matrix as
T which is obtained by taking A = 1 in 792}, Then, for SL ¢(2) the matrix elements
(T 1 m, k=1,0,-1} of T in (45), with A = 1 and £ = 1, are seen to coincide with
the spin-1 representation functions {d}, | m, k = 1,0, —1} given by Nomura [10] (note:
our g is Nomura’s q‘%).

For SU,(2) one has to take into account further relations among {a, b, ¢, d} due to the
requirement of the existence of an involutional antihomomorphic *-operation satisfying

I N L T\ —ge a @

(4.6)



2826 R Jagannathan and J Van der Jeugt

T=(a b)=(a ——qc“) ‘ 48)
c d c a

with g € R\{0} necessarily. It may be noted that the unitarity condition (4.7), or
T*T =TT = 1, requires the relations

so that

aa* +qic*c=a*a+c"c =1 4.9)

to be satisfied, besides the commutation relations (2_.?).
Let us now generalize the above result, For V"2, the matrix elements are

Fime = QF" (7 £ mllj + 1 F m)}i8mp

fo.mk=m3mk m!k=j!j'_ls-"1“(j—1)9-'j'
Zm{c = %&m‘c
4.10)

Substituting this representation (4.10} in (3.9}, it is found, after considerable algebraic
manipulation, that one can write

TG = g1 gritRei iy OeRCI ki i — i + RN — 113
qith=s prekts o5 gimm=s
[j+k—s]l[m—k+s[s] {j —m —s]!
4.11)

where s runs from max(0, kX — m) to min(j +%,j —m). In the limit A = 1, @ = ¢ and
§ = 1, corresponding to SL,(2) (or SU,(2)), the above expression (4.11) for ‘2:"({‘) coincides
with Nomura's expression [10] for the quantum d4-function d;';k (with our g replaced by
Nomura’s q'% as already noted). Nomura [10] has also noted the RTT relation (3.17) for
the representation matrix 7Y of SU,(2). When £ is not taken specifically to be unity,
the above matrices {7V | j =0, 3,1,3,...} (4.11), with O = g and A = 1, provide the
representations of GL,(2) (see [4] which gives these representations with an equivalent
expression Tor the rh.s. of (4.11)). The r.h.s. of (4.11) can be rearranged in several ways
and so various equivalent expressions exist for 7%’ in terms of different g-special functions
for the cases of SL,(2} and SU,{2) (see [6,7,9,11, 10]).
When z # %, the I'’?)-representation of U, 4(gl(2)) is given by

Jemt = A 1QFHG £ m](j + 1 F ml} o an)

% Z Q—S(Zj—m+k—s)l—s(m—k+s)
5

fo.mk = mémk
Lok = Z8mk:
mk=j,j—1...,—(J—-1,—j. 4.12)

Substituting this representation (4.12) in (3.9) one gets
i\ B =) e 1=227U ) . . . , .
TP = A RE D2l k= =1 =G = D] @.13)

As can be seen from (4.13), for generic z, the one- and two-dimensional representations are
respectively given by

TO2 - g2 2 4.14)
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and

-t
TG0 _ pr-i AN (4.15)
_ A—eDe 4

As has already been noted at the end of section 3, it can be seen that TG corresponds to
the fundamental T-matrix of GL 4(2) with p’ = p?*1/g*~1 and ¢’ = g**4/p~1.

5. The quantum group Ug ,(2)

It is not possible to have SU, ,(2) with p # g and for SU, (2) it is necessary that g € R\{0}.
However, we can have U, ;(2) with p =g (complex conjugate of g); we can have Uz ,(2)
for any g € C\R. For g € R\{0} one gets U,(2) of which SU,(2) is the special case
corresponding to unit value for the quantum determinant. To see the features of Uy, ,(2) and
Ug4(2) one has to study the consequences of imposing the unitarity condmon on GL, ,(2)
(see [28] for some useful details in this regard).

The fundamental T-matrix of Uz 4(2), for g = |gle¥, is gwen by

T=(a b)=(a —g Dc* )=(a —qc*D) 5.0)
c d ¢ Do ¢ a'D
with *
ac =7gea al =Da ac* =gc'a De* = ¥e*D cc* =c*c
D*D=DD* =1 aa* + |gftc*c =1 a*a+ctc=1
and their +-conjugate relations, sgtisﬁed (g* = g). Note that

' TT*=T*T=1 (5.3)

in view of the relations (5.2), as required, and D may be representated as €' with ¢* = ¢.

I g4 € R\{0} the above equations (i.e. (5.1)+5.3)) hold with 8 = 0 and D is a central
element with values on the unit circle in C: one gets U;(2). I the value of D is fixed
to be unity U,(2) — SU,(2). It is obvious that the representation matrices of Uz o(2)
and U, (2) are given by equation (4.11) with relations (3.1) between {a, b, ¢, d} taken into
account.

6. Clebsch—Gordan coefficients for U, ((gl(2)) and G L, ,(2)

Let C and C’ be the Clebsch-Gordan matrices (CGMs) such that C~'AC and C'—1A'CY
are reduced representations corresponding to the coproduct A in (1.2) and the opposite
coproduct. From the relation (2.12) it is clear that ' = RC, where R is the R-matrix
obtained from the universal 7 by substituting the corresponding irreducible representations
involved in the coproduct (see [29] for a detailed dis¢ussion on the relation between Cs
and R). Now, let us make the following observation on the cGMs for U, ,{gl(2)} (or
Ug(gl(2))): from (2.15) it is easy to see that

Coa=FCosmt  Cou=F7'Chu. (6.1)
Writing explicitly, one has the expressions for the (p, g) (or (@, A)) CGCs as

{(1z1my, jazoma| jzm) = A™MBTHRG, L ima, Jamg|fmbg

. \ . - LT 6.2)
{hzimy, jozgma| jam) = WMMag, o L (ima, jamal jm)y



2828 R Jagannathan and J Van der Jeugt

where {{jimi, jamz|jm)g} and {{jimm,, jgmzljm)g} are the Q-cccs of Up(gl(2)
corresponding respectively to the coproducts Ag =1 and A/ oa=1 (see (2.11)).

It is pamcularly interesting to consider the coproducts for Uz 4(u(2)) with g € C\R. In
this case, @ = |¢| and A = e~*¥, Hence, the coproduct (2. 11) w1th Hermitian Z and Jp, also
preserves the Hermiticity property of the pair (J4., J-), ie. Ji = Jz. In the physicai context
this implies an addition of g-angular momenta of twa particles, (1) and (2), according to
the rule

A(Tz) = Je(D)lg| DT 4 (g0 DeHZD 1, (2)

A(Jy) = Jo(1) + Jo(2) A(Z)=Z(1} + Z(2)
with some ‘phases’ which may somehow be irremovable. In fact, one can even have
lg| = 1, i.e. a modified addition rule for ordinary angular momenta with a new additive
‘phase’ quantum number. This aspect of the quantum algebra Uz ,(x(2)) may be worth
probing further, particularly in view of the interest in physical applications of Up 4(u(2))
(see [30]). )

Let us now look at the direct product representations of the quantum group GL, 4(2).
From (3.16) it follows that

T = Exp gy AT expla(A(Jo) + AEDIExp p{BATL)

BT = Expga{y () jexpla (&' () + &/(2)Exp 2 (B8 (J))
where A is given in (3.3} and the representations involved in the coproducts are the
relevant representations FGD) Itis particularly easy to verify these relations in the
case when A comesponds to the direct product of two identical F(%'%)-representations.

It is obvious that C™'715C and C'"HRTC' will be in reduced forms. Since, for
Upq(gl(2)), AUvzdlzz) E-"_'I_'I-’zl_ o) @Y 22, the direct product representation
Th = (TUa) g JUnalyrUn = ® TYs2)) (or To7; comesponding to the opposite
coproduct), where IU? is the (2j + 1)-dimensional identity matrix corresponding to the
unity in the (j, z)-representation, will be reduced to the direct sum of the representation
matrices {7Y-4+2)j =|j; — ja|, ..., j1 + j2} and the corresponding CGCs are given by (6.2).
As an interesting example, let us consider the direct products of the representations
labelled by (0,z — %) and (J, %) for both Up,4(gl(2)) and GL,,(2); note that, in general,
the (, z)-representation is defined by (4.12) (or (3.1)). Using the coproduct (3.3) and its
opposite, the correspondmg direct product representations of U ,(gl(2)) are given by, with

(U z1) =0,z — 3) and (ja, z2) = (j, 3),
AT dmi = Q" +mllj + 1= m]B8p e
AT Y = AZT1 QPG — m[f + 1+ m)}E 8
ACo)mt = My
A(Z)mic = 28
mk=j7j—1,....,~G—1),—j {6.5)

(6.3)

(6.4)

and
A me = AZV Q=+ ([ 4+ m(f + 1 — mIH e
A’({_)mk = Q™1 {[j — milj + 1+ m]}idmpy
AN (I mp = M8
A Z)mi = 28
mk=jj—-1....,.—(G-1,~j. (6.6)
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Using these representations in (6.4) above, it is seen that the corresponding direct product
representations of GLp ,{2) are given by :

TG =D TP BT = TUPDeh (6.7)

It is easy to verify that the direct product representations of U, ,(gl(2)} given by (6.5)
and (6.6) can be ‘reduced” to (or made equivalent to, in this case) the defining
representation (4.12) using the CGCs obtained from (6.2) by taking the (-CGMs to be identity
matrices. ‘The same CGMs are seen to ‘Teduce’ also the direct product representations
of GL,4(2) given by (6.7) to the defining representation (4.13). It may also be noted
that the direct product representations of GL, ,(2) given by (6.7) satisfy the RTT relation
(3.17) with a (2j + 1)-dimensional ‘R-matrix’ with elements {Rp; = A% Dm§ im, k =
HU-1D,...,—{ — 1), —j} in accordance with (2.16). -

7. Congclusion

Before closing, we may mention a few related points.

The converse of the exponential map, namely the passage GLp4(2) —> Up 4(gl(2))
using the representation of GL ,(2) close to identity, for infinitesimal values of the group
parameters {, B, v, 8}, follows by writing 7 ~ 1+ pJ_ + aly + Z) + 8(Jy — Z) + BJs.
Thus, if one can obtain the representations of GL,4(2) by some method directly, then
the representations of its infinitesimal generators {J, Js, Z} forming the dual algebra

Up.4(g1(2)) can be derived. This is how Finkelstein [4] obtains the relationship GL,(2) —>
U, (gl(2)), independent of [1], using the theory of invariants to derive an equivalent form
of the representation matrix (4.11) for the case p = g.

Finkelstein’s analysis of the representations of GLg(2) [4] is motivated by the
construction of a GL,(2) Yang—Mills theory in which one would regard the non-Abelian
group parameters {ee(x), B(x), ¥ (x), 6(x)} (the coproduct rules of which specify the group
multiplication law as pointed out in [3]) as space-time fields. Akulov er al [27] have
considered the differential calculus of the group parameter space for SL,(2) and studied
a related field-theory model. The problem of realization of the group parameters as
dependent on continuous classical variables (like space-time} has been addressed recently
by Volovich [31] at the leve] of the variables {a, b, ¢, d} (see also [28]). Let us observe an
example of such a realization based on the relations (3.7) and (3.8). Using the well known
Bogoliubov transformation of a pair of commuting sets of boson operators, we can write

ot = (0 — Y @)1 () + (0 + OVl () (x)
B=vlx) y=vl
8 = (p + Y] ) () + (0 — W ()

with ¥ (x) = (coshx)a; — (sinhx)al, ¥(x) = (coshx)a, — (sinhx)a], x € R, [a;,a}} = 1,
[aa, a{] =1, [a1, a2] =0, [aq, ag] = 0. In the context of building gauge theories based on
quantum groups related to GL(2) it is interesting to observe that in the case of GL, 4(2) the
two-dimensional vector spaces carrying the fundamental representation (7') have commuting
components if p = 1, just like the Hilbert space of a two-level ordinary quantum mechanical
system. Besides the intetpretation of the matrix elements of the representations of SU,(2) as
wavefunctions of quantum symmetric tops [10], generalization of quantum dynamics based
on the representations of SU,(2) has also been considered [32]. Since having one more
parameter would provide more flexibility in mode} building, we believe that the study of
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representations of G L 4(2) should prove useful. Recently, generalization of the exponential
map for the quantum supergroup GL, 4(1]1) has also been obtained [33].

There are several approaches to quantum groups (or quantum matrix pseudogroups)
and quantum algebras (or quantized universal enveloping algebras) which are in duality
with the quantum groups in the Hopf algebraic sense (see, e.g., [34, 35] for reviews of the
subject). In the case of the quantum group GL, 4(2) [12-15] the structure of its dual Hopf
algebra Up 4(g!(2)) is known from the studies by Schirrmacher ez al [16], using the non-
commutative differential calculus approach, and by Dobrev [17, 18, 25] using the approach
of Sudbery [36]. The recent analysis [1] of the duality relations between Lie bialgebras,
with particular reference to A(GL,(2)) and Up4(gl(2)), has led to a generalization of
the well known exponential relationship between a classical Lie group and its Lie algebra
and the explicit form of such an exponential map has been obtained between the quantum
algebra Up 4(gl(2)) and the corresponding quantum group GL, 4(2). This relationship is
given abstractly in terms of a universal 7-matrix, involving both the group parameters of
GLp 4(2) and the generators of Up 4 (g1(2)), and for particular representations of Uy 4(g!(2))
this universal 7-matrix gives the representations of GL; 4(2). Using this Fronsdal-Galindo
formalism we have derived explicitly the finite-dimensional representations of GL, ,(2), by
exponentiating directly the well known (2f + 1)-dimensional irreducible representations of
Up4(g1(2)), and the earlier results on the representations of GL,(2), SL,(2) and SU,(2)
are found to be special cases in the appropriate limits, We have also derived the CGCs for
the quantum algebra Up ,(gi(2)) and noted that the same CGCs can be used for the Clebsch—
Gordan reduction of the direct product representations of the quantum group GL; 4(2).
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